CropML


CropML
CropML (Crop Model Library) is a framework-independent, software component implementing a variety of approaches for crop growth and development. Like CaneML (Cane Model Library) nad TreeML (Tree Model Library), models are implemented using a fine granularity, and they are also used in composite structures which can be used as crop simulation models in applications. The architecture used for implementing modelling approaches and the fine granularity allow either using existing models or building new ones via hybridization of available approaches.

The models currently available in CropML are:
- CropSyst (Stöckle et al., 2003),
- WARM (Confalonieri et al., 2009),
- STICS (Brisson et al., 2008),
- WOFOST (original version) (van Keulen et al., 1986),
- WOFOST-GT (about 60% less parameters because of the elimination of AFGEN tables) (Stella et al., 2014),
- WOFOST-GT2 (extention of -GT: it includes an improved representation of canopy structure) (Stella et al., 2014).

The component is distributed free of charge for non-commercial purposes with a dedicated software development kit (SDK), and can be used by modellers and developers in their own applications. SDK includes documentation of code and algorithms, as well as sample projects showing how to use the component and how to link it with others for, e.g., soil water balance, diseases, abiotic damages.

References:

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2008. Conceptual Basis, Formalisationsand Parameterization of the STICS Crop Model. Éditions Quæ, Versailles, France,pp. 297.

Confalonieri, R., Acutis, M., Bellocchi, G., Donatelli, M., 2009a. Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecol. Model. 220, 1395e1410.

Stella, T., Frasso, N., Negrini, G., Bregaglio, S., Cappelli, G., Acutis, M., Confalonieri, R., 2014. Model simplification and development via reuse, sensitivity analysis and composition: a case study in crop modelling. Environ. Model. Softw. 59, 44-58.

Stöckle, C.O., Donatelli, M.,Nelson, R., 2003. CropSyst, a cropping systems simulation model. Eur. J. Agron. 18, 289–307.

van Keulen, H., Wolf, J., 1986. Modelling of agricultural production: weather soils and crops. In: Simulation Monographs. Pudoc, Wageningen, The Netherlands, p. 479.


Product Manager: Roberto Confalonieri
Online Code doc: http://download.cassandralab.com/cropml/cropml_codedoc/CropML_codedoc.html
Online Help: http://download.cassandralab.com/cropml/cropml_help/Abstract.html
Application file: request a download link providing your email below.

European Commission, Joint Research Centre, AGRI4CAST
http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST
 
CRA - Consiglio per la Ricerca e la Sperimentazione in Agricoltura (Italy)
http://sito.entecra.it/portale/index2.php
 

2019 - Crop Science, 59, 1155-1164.
Analysis and modelling of processes involved with salt tolerance and rice.
Tartarini, S., Paleari, L., Movedi, E., Sacchi, G.A., Nocito, F.F., Confalonieri, R.

2019 - European Journal of Agronomy, 103, 108-116
Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data.
Gilardelli, C., Stella, T., Confalonieri, R., Ranghetti, L., Campos-Taberner, M., García-Haro, F.J., Boschetti, M.

2019 - Ecological Modelling, 401, 111-128
Development of generic crop models for simulation of multi-species plant communities in mown grasslands.
Movedi, E., Bellocchi, G., Argenti, G., Paleari, L., Vesely, F.M., Staglianò, N., Dibari, C., Confalonieri, R.

2019 - Agricultural Systems, 168, 181-190
A high-resolution, integrated system for rice yield forecasting at district level.
Pagani, V., Guarneri, T., Busetto, L., Ranghetti, L., Boschetti, M., Movedi, E., Campos-Taberner, M., Garcia-Haro, F.J., Katsantonis, D., Stavrakoudis, D., Ricciardelli, E., Romano, F., Holecz, F., Collivignarelli, F., Granell, C., Casteleyn, S., Confalonieri, R.

2019 - Scientific Reports, 9, 9258
Quantifying uncertainty due to stochastic weather generators in climate change impact studies
Vesely, F.M., Paleari, L., Movedi, E., Bellocchi, G., Confalonieri, R.

2019 - BMC Bioinformatics, 20, 514
Predicting rice blast disease: machine learning versus process-based models
Nettleton, D.F., Katsantonis, D., Kalaitzidis, A., Sarafijanovic-Djukic, N., Puigdollers, P., Confalonieri, R.

2018 - Ecological Modelling, 368, 1-14.
Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change.
Gilardelli, C., Confalonieri, R., Cappelli, G., Bellocchi, G.

2017 - Global Change Biology, 23, 4651-4662.
Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes.
Paleari, L., Movedi, E., Cappelli, G., Wilson, L.T., Confalonieri, R.

2017 - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 5423-5441.
Downstream services for rice crop monitoring in Europe: from regional to local scale.
Busetto, L., Casteleyn, S., Granell, C., Pepe, M., Crema, A., Barbieri, M., Campos-Taberner, M., Casa, R., Collivignarelli, F., Confalonieri, R., García-Haro, J. ... Movedi, E., Nutini, F. ... Boschetti, M.

2017 - Scientific Reports, 7:4352
Trait-based model development to support breeding programs. A case study for salt tolerance and rice.
Paleari, L., Movedi, E., Confalonieri, R.

2017 - Scientific Reports, 7:14858
Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.
Hasegawa, T., Li, T., Yin, X., Zhu, Y., Boote, K., Baker, J. ... Confalonieri, R. ... Wallach, D., Wang, Y., Wilson, L.T., Yang, L., Yang, Y., Yoshida, H., Zhang, Z., Zhu, J.

2017 - European Journal of Agronomy, 89, 97-106
Improving cereal yield forecast in Europe - the impact of weather extremes.
Pagani, V., Guarneri, T., Fumagalli, D., Movedi, E., Testi, L., Klein, T., Calanca, P., Villalobos, F., Lopez-Bernal, A., Niemeyer, S., Bellocchi, G., Confalonieri, R.

2016 - Environmental Modelling & Software, 85, 332-341
A taxonomy-based approach to shed light on the babel of mathematical models for rice simulations.
Confalonieri, R., Bregaglio, S., Adam, M., Ruget, F., Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Buis, S., Fumoto, T., Gaydon, D., Lafarge, T., Marcaida, M., Nakagawa, H., Ruane, A.C., Singh, B., Singh, U., Tang, L., Tao, F., Fugice, J., Yoshida, H., Zhang, Z., Wilson, L.T., Baker, J., Yang, Y., Masutomi, Y., Wallach, D., Acutis, M., Bouman, B.

2016 - Ecological Modelling, 340, 57-63
Sensitivity analysis of a sensitivity analysis: we are likely overlooking the impact of distributional assumptions.
Paleari, L., Confalonieri, R.

2016 - Ecological Modelling, 320, 366-371
A model to simulate the dynamics of carbohydrate remobilization during rice grain filling.
Stella, T., Bregaglio, S., Confalonieri, R.

2016 - European Journal of Agronomy, 76, 107-117
Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in temperate climate.
Bregaglio, S., Titone, P., Cappelli, G., Tamborini, L., Mongiano, G., Confalonieri, R.

2016 - Field Crops Research, 197, 125-132
WOFOST-GTC: a new model for the simulation of winter rapeseed production and oil quality.
Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M.E., Scaglia, B., Confalonieri, R.

2016 - Computers and Electronics in Agriculture, 128, 46-49
ISIde: a rice modelling platform for in silico ideotyping.
Paleari, L., Bregaglio, S., Cappelli, G., Movedi, E., Confalonieri, R.

2015 - Agronomy for Sustainable Development, 35, 157-167
New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco.
Bregaglio, S., Frasso, N., Pagani, V., Stella, T., Francone, C., Cappelli, G., Acutis, M., Balaghi, R., Ouabbou, H., Paleari, L., Confalonieri, R.

2015 - Biomass & Bioenergy, 80, 85-93
Are advantages from partial replacement of corn with second generation energy crops undermined by climate change? A case study for giant reed in Northern Italy
Cappelli, G., Yamaç, S.S., Stella, T., Francone, C., Paleari, L., Negri, M., Confalonieri, R.

2015 - Climatic Change, 132, 661-675
District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios.
Paleari, L., Cappelli, G., Bregaglio, S., Acutis, M., Donatelli, M., Sacchi, G.A., Lupotto, E., Boschetti, M., Manfron, G., Confalonieri, R.

2015 - Agricultural and Forest Meteorology, 214-215, 483-493
A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration.
Makowski, D., Asseng, S., Ewert, F., ... , Confalonieri, R., ... , Zhu, Y.

2014 - Environmental Modelling & Software, 59, 44-58
Model simplification and development via reuse, sensitivity analysis and composition: a case study in crop modelling.
Stella, T., Frasso, N., Negrini, G., Bregaglio, S., Cappelli, G., Acutis, M., Confalonieri, R.

2014 - Environmental Modelling & Software, 62, 478-486
A generic framework for evaluating hybrid models by reuse and composition - a case study on soil temperature simulation.
Donatelli, M., Bregaglio, S., Confalonieri, R., De Mascellis, R., Acutis, M.

2014 - European Journal of Agronomy, 59, 78-85
Evaluation of WARM for different establishment techniques in Jiangsu (China).
Pagani, V., Francone, C., ZhiMingWang, Qiu, L., Bregaglio, S., Acutis, M., Confalonieri, R.

2013 - Agronomy for Sustainable Development, 33, 393-403
Wheat modelling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits.
Confalonieri, R., Bregaglio, S., Cappelli, G., Francone, C., Carpani, M., Acutis, M., El Aydam, M., Niemeyer, S., Balaghi, R., Dong, Q.

2012 - Ecological Modelling, 225, 159-166
Quantifying plasticity in simulation models.
Confalonieri, R., Bregaglio, S., Acutis, M.



INRA Morocco
http://www.inra.org.ma/accueil1.asp?codelangue=23&po=2
 
European Commission Joint Research Centre AGRI4CAST
http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST
 
CNR - Consiglio Nazionale delle Ricerche
www.cnr.it
 
Conserve Italia
www.conserveitalia.it
 
INRA - Institut national de la recherche agronomique
www.inra.fr
 
CREA
www.crea.gov.it
 
DTN
www.dtn.com
 
University of Edinburgh
www.ed.ac.uk
 
NEIKER-Tecnalia
neiker.eus
 
e-GEOS
www.e-geos.it
 
Luke - Natural Resources Institute Finland
www.luke.fi
 
UCL - London's Global University
www.ucl.ac.uk
 
University of Hamburg
www.uni-hamburg.de
 
City University of New York
www2.cuny.edu
 
Van Hall Larenstein University of Applied Sciences
www.vhluniversity.com
 
Cukurova University
www.cu.edu.tr
 
DukeDevice
dukedevice.com
 
Walloon Agricultural Research Center
www.cra.wallonie.be
 
Cornell University
www.cornell.edu
 
North Carolina State University
www.ncsu.edu